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How transversal fluctuations affect the friction of a particle on a rough incline
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We present molecular-dynamics simulations of a sphere moving down an inclined plane consisting of
similar spheres of smaller size. For a certain range of inclinations, the sphere moves down the plane with a
mean velocityv,#0. We investigate the properties of the motion in this steady state and the limits for its
existence for a certain set of parameters. It is found that the steady-state velocity of the particle is independent
of material properties and depends only on the geometry of the system. This means that the particle experi-
ences an effective velocity-dependent friction force, with an effective “viscosity” determined only by the
geometry. The fluctuations of the motion, however, can depend on the coefficient of restéutidror
example, the diffusion coefficie®, is influenced bye,, but hardly depends on the roughness of the plane,
while for D, the reverse is true. The range of the inclination angle and the roughness for which a steady state
exists also depends a,. We discuss how these results can be understood by considering the details of the
motion.[S1063-651X%97)09509-3

PACS numbgs): 46.90:+s, 07.05.Tp, 46.30.Pa, 83.70.Fn

[. INTRODUCTION exerted on the particle by the bumps on the plane scale with
these parameters and how does it depend on material prop-
Granular materials recently have received increasing inerties such as the coefficient of restitution and the friction
terest from the physics community]. This interest certainly ~ coefficient of the particles?
is due to their practical importance, but even more so to the Though we will also discuss briefly the conditions for the
fact that they represent an easily observable system far fro@Xistence of a steady state with+ 0, here we focus mainly
thermodynamic equilibrium. Even seemingly simple granu-on the properties of the motion the steady state. Experi-
lar systems can show surprisingly complex behavior. Herénentally, it was found that the mean velocity is proportional
we will discuss such a system: a single sphere moving ot the driving force, which was interpreted as being due to an
an inclined plane roughened by gluing spheres to its surfac&ffective viscous friction. The mean velocity scales with a
Figure 1 shows a schematic drawing of the setup. power of the size rati@, i.e., for the mean velocity, of the
This system already has been the subject of a number dfall in the steady state,~®“ sin 6§, where « seemed to
experimental[2—9] and theoretica[10—13 investigations, depend slightly on the preparation of the rough plane. Mea-
but still no complete understanding of the motion hassured values for were 1.5[3-5] and 1.058,9] on a plane
emerged. The reasons for the strong interest in this system Igovered with glass spheres, with different density of the
in the hope of gaining some understanding of the propertiepacking and different sizes of the glued beads, and 1.3 on a
of granular flow on inclined surfaces, such as avalanchinglane covered with sanf’]. The linear dependence of the
[14] and segregation in flow in inclined chutg5], or in velocity on the driving force is surprising on first sight be-
rotating drumg16-19, as well as questions about the sta-cause the velocity loss in each impact should be proportional
bility and steady-state properties of flow on inclined surfacedo the mean velocity, and the number of impacts per unit
in general. time should be proportional to the velocity as well. This
The advantage of having only a single particle move in aryields a friction force proportional t@? [21] and hence
otherwise fixed environment is the nearly perfect control ofv,~ \/sin 6. This behavior was actually found in quasi-two-
all important parameters: The slope of the plane can beéimensional system@& ball moving along an inclined line of
fixed (and does not vary in time as in an avalanching sandalls) in both experiment and simulatidi2,6,11,123, where
heap or a rotating drumas well as the roughness of the it can be explained using a detailed model of the motion
plane by choosing the radil® of the moving particle and
the radiug of the particles on the plane. The particle can be rolling ball (radius R)

introduced on the plane with a well-defined starting velocity,
Y .\j;ued bzlls (radius r)

many-particle flow in inclined chutes it is still unclear how

the flow is affected by the way particles are introduced into z
the systen20]. The main questions this system poses are
the following: Given a size ratisb=R/r of the particles,
i.e., the roughness of the plane, and an inclination adgle
will the patrticle reach a steady state and if so, is it indepen-
dent of the initial conditions? How does the friction force FIG. 1. Schematic drawing of the ball on the plane.

which is important since this may affect its motion. For
Lomsy X
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[12]. On the inclinedplane there seems to be a crossover forces has been used to accomplish fa&]. Here we use the
from linear behavior to a square root for very large andsame forces as in our simulation of the two-dimensional case
heavy balls and smald [22]. The reasons for this remain [12], i.e., the force acting between particieandj is given

completely unclear so far. by
The main difference between the two-dimensional and
three-dimensional cases is that in three dimensi{8D8 the Fij=Fnn+FgS, @

ball has an additional degree of freedom. It dand does

move in the direction perpendicular to the inclination of thewhere

plane, due to oblique impacts with balls on the plane. This .

leads to increased dissipation of energy compared to 2D Fn=—Kné—7né 2
since transverse motion “drains” the particle of a parvgf

as transverse motion is only dissipative. Though certaiply and
can be transferred back tg, this only means giving back

part of what previously had been lost, so there is only net
dissipation due to the additional degree of freedom. But wh
this increase should lead t@scousfriction is still unclear. Coulomb friction coefficient, ané,, v,, andy, are mate-

lt. thus is necessary fo investigate the ﬂuctuat|on_s of th‘?ial parameters relating to the stiffness and dissipative prop-
motion more closely since they seem to be the key d|fferenc8r,[ieS of the materialfor a detailed explanation sda?2]).

between 2D and 3D. Indeed, the argument leading Yrhe only difference between the use of these forces in 2D

Fs:_min(|')’svs|’|MFn|)Sgr(Us)- )

34—|ere§ denotes thévirtual) overlap of the particlesy is the

vy~ ysin ¢ disregards fluctuations, and as we have shown iny,q 3p Jies in the definition of the unit vectsr(the defini-
previous work 12], these can be neglected in 2D since theretion of i does not change as compared t0)2D 3D, the

the motion is very regular. In 3D, they should be of greateryiro tion of the tangential force is given by theojectionof

importance. Recent experimental efforts have thus concenpq velocity vector on the plane perpendicular fy since

trlated on RS n:ﬁasurement of tr;e ?|§$frs_lon pro?ftlarpe? of t ntrary to the two-dimensional case there is a whole plane
plane, i.e., on the measurement of diffusion coefficients an erpendicular tai. Thus

their dependence o and 6 [8]. These experiments have

yielded some surprising results, for example, insensitivity of 7T

the longitudinal diffusion coefficient t® [8], but the details fi= ——, 4
of the motion that might explain them are inaccessible to |r,——ri|

experimental observation. Computer simulations can provide . . o e s s

this additional information as well as allow variation of ma- s Vim0 [0 7o) Al N(RW; — Riws) )
terial properties far more freely than possible in experiments. |0} —0i—[(0;—0;) - AlA+N(Rw; — Rjw;) |

In this paper, we present a fully three-dimensional simu- o )
lation of this system. Previous simulations were either refForce(3) can be extended to 3D trivially because it depends
stricted to two dimensioni$,11,13 or dealt only with ques- only on the instantaneous values of the velocity and the over-
tions of static equilibrium of balls on the plari@]. The  lap (contrary to some other force la@27]) and thus is not
outline of the paper is as follows. In Sec. Il we will briefly affected by any memory of changes in the directiors.of
explain the extension of the simulation method we used in In all simulations presented here we used the parameters
2D to 3D. We will then discuss the results obtained. Therekn=2x10> N/m, y,=1000 kg/s,»=0.13,r=0.5 mm, and
we will first present more global properties of the motionM=%7R3p for the mass of the rolling ball with
that can be compared with experimental results, as well ag=7.8 g/cni. The values of these parameters were chosen
the influence of material parameters such as the coefficient @ match the steel balls used [i6,5,8 and the size of the
restitution on these properties. To explain some of these reylass beads glued onto the inclined pl48¢ the choice of
sults, in the following we concentrate on the details of thek  leads to a collision time of the order of 19s. For the
motion inaccessible to experiments. As in the two-choice of ys, which is mainly a technical parameter, see
dimensional case, these reveal the dissipation mechanism ga-2]. The dampingy, is determined by fixing the normal
tive in the steady state and thus explain the insensitivity otoefficient of restitutiore,, = —v!v! | defined by the ratio of

some of the global properties of the motion to material prop-ina| and initial normal velocities. In this paper, we will show
erties. Finally, we discuss the consequences this has for thagyts for 0.4<e,<0.8.

differences and common features of the two- and three- Tne main problem in the three-dimensional simulation, if
d|menS|ona}I cases and compare our results wlth experimenfsis to be compared with experiments, lies in producing a
and a previously proposed model of the motion. plane with similar densityand disorder as in experiments,
especially aglisordercannot be easily quantified. In the ex-
periments the rough plane was produced by placing a sheet
of contact paper on a glass plate and then spreading glass
beads onto it slowly moving from one edge of the plane to
We simulate the motion by the molecular-dynamicsthe other. This gave area fractions of glued beads in a range
method[23,24], which was introduced to the simulation of from 0.68 to 0.74. Algorithms designed to produce random
granular materials by Cundall and Strd@5]. Particles are two-dimensional packings, for example, the random sequen-
treated as “soft” (i.e., they can overlgpand interact with tial adsorption model4] or more refined versions of it, can-
some repulsive force only when they overlap. A variety ofnot reach such a high density. To be able to compare our

II. SIMULATION METHOD AND PREPARATION
OF THE PLANE
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FIG. 2. Histograms of the velocity distributions fdr=5 and
6=0.05.

results with experiments, we thus used a scanned configur
tion of the “real” plane in the simulations. The section of

the plane we used contained 4085 particles and the size was

11.25<4.35 cnf. The coordinates of the particles on the

boundaries were shifted slightly to create smooth periodic

boundaries.

lll. SIMULATION RESULTS

A. Average properties

In the simulations presented here, the ball was launched

onto the plane with a rather high starting velocity and
vy=0. When the ball reached a steady state with 0 for a
certain combination ofp and 6, we averaged over several
runs with different starting velocities and starting positions.

In each run, the velocity fluctuated somewhat and also the

mean velocity varied a bit more from run to run than in 2D.
Figure 2 shows typical velocity distributions. The tail to-
wards smallex velocities corresponds to larggrvelocities
(see Fig. 3 i.e., to parts of the motion where a lot &f
velocity could be transferred to thedirection. Very similar
distributions and correlations af, and v, were found in
experiments[8]. In Fig. 4@ we plot the velocityv, for
various size ratio® as a function of sird for e,=0.8. Ob-

HOW TRANSVERSAL FLUCTUATIONS AFFECT THE . ..

3647

0.10

0.05

0.00

v,(m/s)

-0.05

-0.10
0.00

Qbs
v,(m/s)

0.10

FIG. 3. Correlation ob, andv, for the same parameters as in
Fig. 2.

viously for very larged the velocity curves look more like
ysin 6 (though it is hard to decide if the exponent is really
1/2), whereas for smalle® the curvature seems to decrease.
Unfortunately, the range of inclination angles for which a
steady state can be found decreases at a certain point as well
and it is very hard to decide over such a small range of
inclination angles whether the curves are really linear for
small ®, as seen in the experiments. In Figbythe veloci-
ties were scaled by a factdp ~“ with «=1.5. This is the
same value as that found by Riguidid5]. The sudden rise

of the velocity curves corresponds to a similar intermittent
motion as observed in two-dimensional simulatiph&] and
three-dimensional experiments], where the ball still main-
tains a mean constant velocity, but with stronger fluctuations
and short accelerating and decelerating phases.

Figure 5 shows the phase diagram obtained from these
velocity curves. Byphaseshere we denote the different
kinds of motion. In phaseA the particle decelerates and
comes to a stop, independently of the velocity with which it
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FIG. 4. () Mean velocities fore,=0.8 and®=4 (circles,
®=5 (squareg ®=6 (triangleg, ®=7 (starg, and =8 (dia-
monds. (b) Scaling of the mean velocities with.
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0.10 T T T - T €,=0.8 hardly deviate from those fa,=0.4. In the inter-
'Y mediate range ofb curves that fore,=0.8 seemed rather
0.08 _‘“-\ ) linear now prove to be part of lines with definite curvature.
5 0.06 \ ‘\.\ c | For even lowerd, however, the curves do not fall as nicely
K N .‘\~o....1_ on top of each other and there is a small but visible differ-
o 004} \\l N’"‘f-—m-\.\. . ence in the curvature. For very lod (for which we did not
.. B even find a steady state feg=0.8) the velocity again seems
0.02 - A R WY 1 to depend linearly on sif. Figure 6 also throws some doubt
0.00 N . , TTe on the scaling that was found in previous work and in Fig. 4.
30 40 50 60 70 80 90 It is obvious that the velocity curves fa,=0.4 will not
o scale with the same exponent as the onesefer 0.8. In-

deed, only taking into account the upper parts of the curves,
where a steady state was found in recent experiments, they
will “scale” with an exponenta=1.05[8]. Our simulation
results are not very promising as far as the scaling witis
concerned.

To us it is not clear yet what conclusions should be drawn
m this. There might be a passage from linear behavior to
a square root, for which the criticdl depends on the coef-
¥icient of restitution. But the seemingly linear curves might
as well just be part of a square root and the curves too short
to decide this. It is also not completely clear if there might be
a fundamental difference between experiment and simula-
tion. We will return to this point later, in the light of other

d shifted d lerin 2D h h simulation results. The experimental values look linear, but
ments and shifted towards smallerin 2D, we have shown o range of angles over which they were obtained is so

that decreasing the coefficient of restitution will hardly affect : ;
the steady-state velocity, but instead shift the phase boundafgz)?.” that they are fitted equally well by a ine and a square
Osc(P) towards larger values dgffor a given®d. One reason
that our range of stabléis too small might be the use of too
high a coefficient of restitution. Thoug,= 0.8 is appropri-
ate (and even a bit too smalfor steel on glass, it is unclear As stated before, the velocity of the particle fluctuates
how strong the effect of the combined setigtass beads on around the mean velocity depicted in Figs. 4 and 6. These
contact paper on glass plais. The glued glass beads are not fluctuations should be interesting for the ability of the plane
immovably stuck and might shift slightly during impacts. A to promote segregation in the transverse direction. In addi-
test performed on the real plane by dropping a steel ball otion, it should be expected that fluctuations affect the phase
the horizontal plane resulted in only very little rebound. Still, boundariegthe stronger the fluctuations in the longitudinal
this does not help in measuring the coefficient of restitutiondirection, the higher the probability that closeégg the ball
since it cannot be controlled under what angle the ball hit anay be trapped and that closefg. the ball may achieve a
ball on the plane, so pre- and postcollisional normal velocivelocity that cannot be braked anymprén the direction
ties are simply not known. We also checked that just like intransverse to the main direction of motion, the particle un-
the two-dimensional case, the coefficient of frictipndoes dergoes a diffusive motiofB,29], and in a reference frame
not influence the mean velocity. moving with v, with the particle, the same is true for the
To show the effect ok, , we plot in Fig. 6 the velocity longitudinal direction. Though the corresponding velocity
curves fore,=0.4 and 0.8 together. Here a different picture distributions are not perfectly Gaussian, as is obvious from
emerges. The curves already exhibiting definite curvature foFig. 2, we define transverse and longitudinal diffusion coef-

FIG. 5. Phase diagram fa;,=0.8.

was launched on the plane; in phaBdt reaches a steady
state, independently of the starting velocity; and in pt@ase
accelerates without reaching a steady state. In re@ipn
sometimes the ball will come to a sudden stop after havinqro
previously traveled with constant velocity because it is
trapped by a large hole on the plane. This is very clearl
distinguishable from stopping in regiof, where the ball
continuously slows down from the start of the motion. A
detailed analysis of this stopping can be found28]. Here
we are more concerned with motion in regiBn

The steady-state regid® is much smaller than in experi-

B. Fluctuations

ficients by
0.20 : D= lim ([x(t) —x(0) — vt ]?)/2t, (6)
t—oo
0.15 k
2 Dy=lim([y(t)—y(0)]*/2t. (7
Z 0.10 E t—oo
| 5"

. In Fig. 7 the diffusion coefficients obtained in our simula-

tions for various size ratios angl,=0.4 are shown. They

0.00 1 1 1 were obtained by performing several long ry@80 s each

0.00 0.05 0.10 015 020 with different initial conditions and then cutting these down

sin6 to pieces of different length, upt3 s each to perform the

FIG. 6. Mean velocities foe,= 0.8 (open symbolsande,=0.4  ensemble average. Because of the anisotropy in the system

(closed symbolsand® =3 (starg, ® =4 (circles, ®=5 (squarey introduced by gravity, we expect anisotropy in the diffusion

®=6 (triangles, and® =8 (diamonds. coefficients as well and thus compute them separately. Con-

0.05
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trary to[29], where we plottedD, andD, as functions of the N@ 3t atate .
mean velocityv,, here we show them as functions of $in E . ¢
This is the quantity that in any practical application, where ;; 2t R .
segregation might play a role, will be important since the AAOO()OBU:B
inclination will usually be at some fixed value while the 1r °°00°o:D ]
velocity may evolve freely. In Fig. T, ®%instead oD, is °
plotted since we found that this makBs, and D, fall ap- 0 o0 0.05 0.10 015
proximately on the same curve. sing

The diffusion coefficients we find are in good agreement
with experimental value§d,29] and are obviously decreas-  FIG. 8. Dependence of diffusion coefficients en. Full sym-
ing with increasing angle of inclination. Note that whBg bols, e,=0.8; open symbolse,=0.4. For the variousb values,
is scaled byd'5, the values foD, andD, are of approxi- symbols are the same as in Fig. 7. The stars correspofid=6.5,
mately the same magnitude, i.e., there i-a@ependent an- €,=0.8.
isotropy in the diffusion coefficients. A similar anisotropy is
found in sedimentation, where, however, the diffusion coefmaintained because tangential velocity gained in moving
ficient corresponding to the mean direction of motion isdown the plane is converted to normal velocity, which is
larger than the one corresponding to the transverse directidfien dissipated. Because even on a line with disorder the
[31]. In our case, the reverse is true. distance throughout which the moving ball can achieve this
In Fig. 8 the diffusion coefficients are shown for two dif- /0SS of normal velocity before impacting the next ball is
ferent values ok, this time without any scaling. Though relatively well defined, this leads to strong regularity in the
for D, the data fore,=0.8 fall more or less on the same motion, with collisions at approximately the same points on
curve as those foe,=0.4, forD, they seem to be larger by the surface of each ball. . .
approximately a factor of 2 foe,=0.8 as compared to _ In 3D, one would expect this not to hold any more, since
e,=0.4. They thus cannot be scaled by the same fabtor N 3D t_here are many mfluer_u:es that prevent such strong
to make them collapse on th2, curve. We will return to regularity. When the ball collides with a ball on the plane

this later and discuss possible reasons, when we know moRightly sideways, it is deflected towards the side. Thus the
about the details of the motion. direction of motion changes at this point. Also the distance

traveled over this ball before hitting the next one may be
much smaller than the diameter of a ball on the plane. Some
of these possibilities are shown on the left-hand side of Fig.
In the two-dimensional case, many of the global proper9, assuming that the direction of motion is hardly affected by
ties of the motion could be explained by analyzing details ofinteraction with the curved surface of the ball. The ball might
the motion, such as distributions of the points on the surfacalso roll down the plane without going over the tops of the
bumps that were impacted by the moving ball, or correla-balls on the plane, moving mainly in the valleys formed by
tions between these and the normal and tangential velocitighe bumps of the surface. A completely different possibility
in these impact$12]. They revealed that the motion in the is that it might be deflected by the first impact with a ball on
two-dimensional case, even if the arrangement of balls otthe plane so strongly that it could jump over to another ball
the line is disordered, is very regular. This regularity resultsmmediately. Considering these possibilities, it has to be kept
from the tendency of the ball to collide with the same ball inin mind that the area on the balls on the plane that is acces-
the line many times, thus losing most of its normal velocity, sible to the moving ball is very small and only very slightly
retaining only tangential velocity with respect to the surfacecurved due to the large values &t
of this particular ball. In the steady state, this leads to quite a The details of the motion we focus on here are essentially
well-defined tangential velocity, with which the moving ball the same as in the two-dimensional case, namely, the times
rolls onto the next ball on the line. With respect to the newof flight between two impacts with balls on the plane and the
ball the velocity has a normal component. The steady state iBxact locations where balls on the plane are hit. Since these

C. Details of the motion
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FIG. 9. Definition of the impact angles. Left: view of a ball on
the plane from the top and definition of the azimuthal angl@he
dashed arrows show possible paths the moving ball may take.
Right: view of a ball on the plane from the side and definitionyof

details are extremely hard to access in experiments, com-
puter simulations provide a useful tool to supplement experi-
mental data. These quantities are of interest because the
times between collisions give an estimate of the time during
which energy can be gained by the particle, while the angles
where the impacts take place show how far the detailed to-
pology of the plane is explored by the ball.

Figure 10 shows distributions of times between two suc-
cessive collisions for two different inclination anglésand
two strongly different coefficients of restitution. The values
of # were chosen such that they lie close to the lower and
upper boundaries of the regi®) respectively, for the coef-
ficient of restitution in questiorisee Fig. 6 We separated
impacts on the uphill facing side of the balls on the plane
(|o|=m/2; see Fig. 9from those on the downhill facing side
(l¢|<m/2). As a matter of fact, this is quite an arbitrary way
of separating the distributions, as we will see, but we adopt it
to enable later comparison with results from the stochastic
model from Ref.[10]. The most important difference be-
tween collisions afe|= /2 and|¢|< /2 is that in a colli-
sion at|¢|= /2, v is transferred t@,, while for|¢|< /2,
v, is transferred taw,. This means that collisions on the
uphill facing side of the bumps drive the particle away from
the plane, while collisions on the downhill facing side drive
it towards the plane. As in 2D, the times between collisions
are on average smalléand some very close to zeréor
|| <7/2 than for|p|=/2, in contradiction td10]. When
the inclination angle increases, both distributions get
broader, but the pronounced decay of the distribution for
|| <m/2 remains, whereas the peaks of the distribution for
||= /2 move towards larger times. Multiplying the times
between collisions by the mean velocity, we find that the

corresponding distances passed between impacts are much

smaller than a particle radius.
Obviously, the overall shapes of the distributions depend
far stronger on the coefficient of restitution than on the in-
clination angle. While the total distribution fa¥,=0.8 is
essentially a decaying function, the distribution f9=0.4

N(dt)

N(dt)

N(dt)
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FIG. 10. Histograms of times between collisions =5 and
(a) e,=0.4, =0.05, andv,,=8.2 cm/s;(b) e,=0.4, #=0.08, and
v,=10.7 cm/s;(c) e,=0.8, #=0.03, andv,=5.1 cm/s; and(d)

e,=0.8, #=0.05, andv,=7.8 cm/s. Full line, total distribution;

rather consists of multiple peaks, getting narrower Wwithgaghed line, previous impact fat| < 7/2; dot-dashed line, previous
smaller times of flight. In addition, the form of the distribu- jmpact at| | = =/2.

tions corresponding thp| < 7/2 and|¢|= /2, respectively
changes, losing some peaks fgij=7/2 and gaining some

A quantity that has not been measured experimentally yet,

for || <w/2. While the shape of the distributions is largely and would indeed be very hard to measure, is the distribution
unaffected byg, they generally extend towards larger times of impact angles, i.ewhere exactly impacts take place on
with increasingé, and fore,=0.8, a shoulder develops for the ball on the plane. The definition of the angles is given in

higher 6.

Fig. 9. Figures 11 and 12 show these angle distributions for
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tributions as in the two-dimensional case what exactly is
happening as the ball moves down the plane. As in the case
of the times of flight distributions, foe,=0.8 the shape of
the distributions does not change very much with increasing
6, though the one corresponding|tp|= /2 develops a pro-
nounced peak. Figure (d corresponds to a run where the
ball, after having moved a distancé2m on theplane with
constant mean velocity, suddenly stops because it gets
trapped by a large hole; hence results the small peak at
v=0.3, which corresponds to the depth of the hole where the
ball got trapped. Foe,= 0.4, the distributions again change
quite significantly in form with changing, just like those for

the times between collisions. Another point that might be
noted is that fore,=0.4 the distribution shows more colli-
sions towards the top of balls on the plane with increaging
while for e,= 0.8 the number of collisions at the top of balls
on the plane decreases with increasthgrhis increase and
decrease, respectively, is entirely due to the change in the
distribution corresponding thp| < /2.

Though the distributions for times of flight and impact
anglesy were already separated according to the side of the
ball on which the impact takes place, it is quite instructive to
have a more detailed look at the azimuthal angleshere
impacts take place. Figure 12 shows these distributions for
the same cases as depicted in Figs. 10 and 11. Again, there
are quite strong differences between the different coefficients
of restitution. While fore,= 0.8 the distribution for smallef
is uniform, for larger@ it starts to develop a peak on the
uphill side, which clearly corresponds to the peak fom
Fig. 11(d). For e,=0.4, most impacts are on the uphill side
of balls on the plane and only very few on the downhill side
(with a uniform distribution on the uphill sideor small 6.

For largerd, this uniform distribution forms a peak similar to
the one fore,=0.8 and two additional peaks develop sym-
metrically on the downhill side.

All these details taken separately give a somewhat con-
fusing picture. But adding one more detail that can be ex-

the same cases as the distributions of times of flight in Figtracted from the simulation, the mechanism providing the

10. In the case ofy we plot N(y)/sin(y) to normalize the

friction force that maintains the steady-state velocity be-

distributions by the size of the corresponding volume elecomes clear. The quantity that reveals what happens in detalil

ment.

on each ball on the plane is the loss of normal velocity per

Unfortunately, even though foe,=0.4 some structure particle passed, i.e., how the normal velocifger the last
seems to be evident, it is not at all as clear from these dismpact with a certain ball relates to the normal velodig-
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1.0 T — — r plained quite easily and the mechanism by which the particle
(a) maintains the steady-state velocity becomes clear. Essen-
0.8 tially, this mechanism is the same as in the two-dimensional

case. Obviously, the ball does not move down the plane by

e 06 _ randomly hopping from particle to particle, but rather, when
*} e ' it arrives at a bead, it collides with it several times. Since we
7 04T -] are dealing with a single ball, it can roll freely and thus most
0.2 dissipation comes from the part of the normal component of
’ the velocity lost in collisions andhot from frictional con-
0.0 . . . v tacts, where the tangential velocity might play a role.
-0.10 -0.08 -0.06 -0.04 -0.02 0.00 As Fig. 13 shows, there are usually a number of impacts
v.' (m/s) with each ball on the plane. In this succession of impacts, the
velocity of the moving ball aligns with the tangent to the
0.50 T - surface of the ball it is passing since it gains velocity in the
(b) tangential direction and loses velocity in the normal direc-
0.40 e ——— tion. If this alignment succeeded for the whole surface of the
' plane, as it would on a perfectly smooth plane, the ball
e 030 1 n would go on accelerating. However, our plane is too rough to
e allow this. Whenever this alignment succeeds, the rolling
T 020} l ball will roll onto another ball on the plane from which it
T rebounds. This collision transfers velocity tangential to the
010 — 1 local plane surface to velocity normal to the local plane sur-
0.00 . ———— face, which can then be dissipated. This mechani;m is the
"-0.060 -0.040 -0.020 0.00 same as in the two-dimensional case; the only difference

v, (m/s) here is that there is a much larger variation in the distances
available for the ball to adjust to the surface of a ball it is
FIG. 13. Relation of normal velocity directly after the last im- passing in 3D(see Fig. 9. This larger variation is also ob-
pact with a ball on the plane to normal velocity directly before thevious from Fig. 18a): In a very large number of cases,
first impact with the same ball fob=5, §=0.05, and(@ e,=0.8  especially close t®gc, there are only one or two impacts
and(b) e,=0.4. The lines denote integer powers of the correspondwith each ball on the plane because very often a ball on the
ing restitution coefficient. plane is passed close to the side. Thus, quite often, the ad-
justment succeeds only imperfectly for high. However,
fore the first impact with the same ball on the plane. Figurethis does not seem to be too important as long as once in a
13 shows the relation of these velocities for two differentyyhile all v, is lost. Already in the two-dimensional case,
coefficients of restitution at the same angle of inclination Ofsuch behavior was observed for h|gh coefficients of restitu-
the plane. tion. Such “leftover” v, (or rather the larger part of it, some
Obviously, all points cluster around integer power®of  transfers back inte,) is added to the freshly gained, and
for e,=0.4 most of the time all normal velocity with respect partially dissipated on the next bump. The main effect of
to the ball passed is lost, i.e., most points concide withxthe |eftoveryv,,, which tends to destabilize the motion, is the fact
axis. In both cases, only the points wherjg# 0 are shown. that this leads to a first collision with the next bump at
This is the reason for the small number of points in Fig.smallery, which leads to less efficient transfer wfto v, .
13(b), because here, most of the time, a&)] can be dissi- Another reason for the larger variation in the number of
pated on each ball passed. In Fig(l)398% of the points collisions with the balls passed is the fact that this first im-
coincide with thex axis, versus only 7% in Fig. 18. Since  pact, besides transferring tangential velocity to normal veloc-
in the tangential direction nearly no velocity is dissipated,ity, may also change the direction of the tangential velocity
this means that the amount of dissipation on passing a ball iwith respect to the plane. This change should be the main
simply determined by the normal velocity in the first impact source of the diffusive motion the particle performs in the
and the number of collisions with this particular baithich  transverse direction. When the particle rolls, the curvature of
can be read off from Fig. 13 for each poinin fact, this is  the ball surface on which the particle moves is so small that
very similar to the two-dimensional systefh2]; the only it has only a minor influence on the moti¢recall the typical
difference is the larger variation of the number of collisionsrange ofy accessed by the ball as shown in Fig).11
per ball in the three-dimensional case. We will discuss the Having identified the mechanism by which the steady
results obtained and their implications for the mean properstate is maintained, we will now discuss how this helps us to

ties of the motion in the following section. understand better the details of the motion presented in Sec.
lll. Let us first take a look at the distributions ¢fin Fig. 11.
IV. DISCUSSION OF THE RESULTS For e,=0.4, dissipation is so strong that already after the

first impact balls have lost so much normal velocity that they
do not jump very far. The drop of the distribution towards
With the help of the last observation in the precedingy=0 is not an indication that the ball does not pass over the
section, the results shown previously on the distributions ofop of the bumps, but is rather due to the fact that it does not
times between collisions, impact angles, etc., can be exnanage to jump over the top, but rolls. This is exactly the

A. Discussion of the simulation results
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same behavior we found in the two-dimensional case aivhen collisions get very oblique, not all impact angles are
small inclination angles. The decay of the distribution to-possible anymore and impacts on the uphill facing side of
wards largery and partly the small peak for impacts on the particles on the plane are favored. But these impacts transfer
downhill side corresponds to the distribution of distancesvelocity tangential to the plane into velocity normal to the
between balls on the line. Note that whenever a peak appeaptane; the ball is thus driven away from the plane again.
in the distributions shown, it is at approximately the sameWhile in the steady state the amount of velocity transferred
point and has approximately the same form. Ege0.8,  to the normal direction does not suffice to carry the ball over
especially close t@,g, there are so many collisions on each to the next ball on the plane, in regi@it may kick the ball
ball that the number of collisions remains high closete0,  up very high, thus allowing it to gain a larger amountugf
while for higher inclination angles, the peak is quite promi-than it lost in this previous impact. In the accelerating re-
nent. This is probably due to the fact that the first jump ongime, the ball is driven towards and away from the plane
each ball carries the ball far enough away from the first im-continuously. This results from a competition of the ball’'s
pact, so the peak does not get smeared out so strongly as fefforts to align its velocity to the plane surface and violent
lower inclination angles. This is probably the same reasorimpacts on the uphill facing side of surface bumps, which
for the partly emerging second peak for impacts on the uphiltlrive it away again if it comes too close, i.e., the ratidv,
side in Fig. 11b). gets too small.

The distributions of impact angles in Fig. 12 confirm Since the explanations we have just given are the same as
this. Whereas fore,=0.4 at lower angles of inclination in the two-dimensional case, the question arises as to
nearly all impacts are on the uphill side, we find two newwhether we can calculate the mean velocity as in the two-
peaks emerging for higher angles of inclination, obviouslydimensional case by treating the ball as completely inelastic
corresponding to the second peak closeto0 and the third and perfectly rough. In the two-dimensional case, the disor-
one close toy=0.1 in Fig. 11b), i.e., balls now manage to der of the plane can simply be incorporated into the calcula-
jump over to the downhill side. Foe,=0.8, we again find tion by assuming the balls on the plane to be equally spaced,
the same characteristics as describedyfare., with increas- with a spacing corresponding to the mean value of the dis-
ing 6 there seem to be more impacts on the uphill side tharribution of distances. Here this does not suffice. In the three-
on the downhill side. The main reason is that the first impactimensional case, it is also important to estimate the amount
in most cases takes place on the uphill side, but either thiby which the ball will be deflected in the transverse direc-
first impact may remain the only one or the following onestion. When moving at an angl@with respect to the direc-
will occur in its vicinity. The distributions of the times be- tion, the ball suffers the same number of impacts as if it were
tween collisions(Fig. 10 show these multiple collisions moving in thex direction since the number of collisions it
quite clearly fore,= 0.4, while fore,= 0.8, the distributions suffers in crossing a certain length does not change. But it is
for the single collisions are smeared out too much to bemoving downthe plane more slowly and thus gains energy
distinguished. more slowly. Obviously, this additional dissipation has a

All these details help one to understand some of the glostrong influence on the motion, since in 3D the averdge
bal properties of the motion discussed in Sec. Il A. The factwhere the motion of a ball can be stable is significantly
that the steady-state velocity,, and thus the effective fric- larger than in 2D. So far, we have not found a reasonable
tion force “felt” by the particle, hardly depends on the co- assumption that would incorporate this scattering in the
efficient of restitution can be explained in the same way as irfransverse direction in a simple calculation since unfortu-
the two-dimensional case. Since the amount of energy dissiately this amount of scattering changes with increasing
pated mainly depends on how much tangential velocity igplane inclination.
converted into normal velocity in the first collision with each ~ This leads us to a completely different feature in the
ball on the plane passed, which in turn is determined only byhree-dimensional case, namely, the fluctuations of the mo-
the geometry of the impact, but not by, it is not surprising tion. In our case these are measured by calculating the dif-
that the steady-state velocity does not dependepnThe  fusion coefficients corresponding to the longitudinal and
same is valid for the lower bounda#g of the steady-state transverse directions of motigseparately, because the sys-
region, just like in the two-dimensional case. The ball onlytem is highly anisotropic Again, we can only discuss quali-
gets stuck when it cannot roll out of the deepest valleys anyatively the possible reasons for theirand ® dependence.
more. The upper boundas-, however, does depend on As we have just explained, the very first impact of the mov-
e, becauses, determines how many bounces on each balling ball on each ball on the plane with which it interacts
are necessary to lose a large part of the normal velocity witlseems to be crucial in determining its motion over this single
respect to each ball before the next one on the plane is hit; i#all. One might thus expect that this is true as well for the
this is not possible, the ball accelerates. direction into which the ball is scattered in this single impact.

Even if the angle of inclination is too large for the particle Though the changesv, andAv, in a single impact depend
to reach a steady state and it constantly accelerates, it tries @m €,, this dependence falls out of the quotiekt, /Av,
adjust its velocity to the direction of the surface. When thethat determines the change of direction in this impact. Since
ball has a considerably largevelocity, the locationgand the diffusion in the transverse direction is mainly due to such
thus impact anglgsof its collisions are uncorrelated: On changes in the direction of the motion, this is to be the reason
average it feels dissipation normal to the plane as a wholéor the insensitivity ofD, to e,. D, should be composed of
and acceleration parallel to the plane. It is thus driven totwo components: one resulting from scattering in yhdi-
wards the plane more and more. At some point of this evorection, and thus related #,, and another one resulting
lution, the particle starts to feel the structure of the planefrom variations in the number of collisons per béile.,
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variations in the loss of normal velocity per ballThese 1000 . T - T y
variations get stronger with increasirgy and exist in the

two-dimensional case as well, which could be the reason for 800 1
the dependence @, one,.

Far more puzzling is the dependence of the diffusion co- ’5] 600 1
efficients on®, namely, thaD, is independent ofb, while Z 400 i
DyMI)BDX, with an exponeng that seems to depend on the
coefficient of restitution. So far, we have not found an ex- 200 1
planation for the observation that the transverse coefficient
of diffusion depends on thé, while the longitudinal one i} -+
does not. 5 6

The slight falling tendency for the diffusion coefficients Ax(r)

with i.ncre.asir)ga is easier to explain. Sinpe we suppose that FIG. 14. Total time spent interacting with the same ball on the
the diffusion is largely due to the scattering of the ball in thepjane, transiated into distances in units of particle radius of the
first impact with each ball on the plane it interacts with, it small particles. Both curves are fér="5 andg=0.05; the full line
should depend on the distribution of these impacts. The morfr e,=0.8 and the dashed line is fef,=0.4.

head-on the impact, the smaller the scattering to the trans-

verse direction, the more oblique, and the stronger this sc
tering. Figure 11 shows that with increasifigthese impacts n
became less oblique, so scattering should be reduced awg
thus diffusion should be reduced.

ith strongly reduced normal velocity and thus with far less
ise than the first one. In addition, the resolution of the
ise measurements is far smaller than in our simulations, so
in the experiments times between collisions as small as ours
) ) ) ) may not be resolved anymore. But if only the first collision
B. Comparison with experimental re_sults and a stochastic with each ball on the plane is loud enough to be recorded,
model of the motion this means that not the time between single collisions but
As already mentioned briefly in Sec. Il, the agreement ofrather the time spent interacting with each ball on the plane
simulations with experiments is not perfect. The mean veis measured. This time can also be extracted from our simu-
locities we find are slightly too highd,g is lower than the lations and is shown for two differers, in Fig. 14. We
values found in experiments; fa, values corresponding to plottedv,dt/r on thex axis to give an idea about the corre-
steel on glass collisiongg ¢ is smaller than in experiments as sponding distances. These distributions agree nicely with the
well. The fluctuationgdiffusion coefficients, et¢.are on av- times between collisions measured in experiments.
erage smaller in our simulations than in experiments, which In the stochastic model of Reff10], a clear double-peak
might be a reason why the mean quantities are larger, singgructure is found, which disagrees with both simulation and
in granular materials dissipation usually increases with in€xperiment. The times between collisions are of the same
creased fluctuationge.g., granular temperatyrg30]. How-  order of magnitude as in our model fas|= /2 for small 6,
ever, our simulation is not a perfect duplicate of the experiwhile for | ¢|</2 they are of the same order of magnitude
mental setup. Some points that differ are the following. Theas in experiments. The experimental data show no evidence
particles in the simulation are perfectly rigidly fixed to the of a double peak. In the stochastic model, these peaks are
plane. They are perfectly spherical and monodisperse. Thesdearly separated from each other and the peak at smaller
conditions are not given in that rigor in the experimentaltimes corresponds thp|=w/2, i.e., to times after collisions
situation and it is not clear how important this might be at the uphill side of balls on the plane. Even if we would
especially for angles of inclination where a large part of theinterpret the decaying distribution and the very broad peak in
motion consists of rolling. The adhesion of balls on self-Figs. 1Qc) and 1@d) as two peaks, they disagree with the
adhesive tape is probably not as perfect as one would wisbtochastic model since then on average smaller times be-
for, which could lead to strongly reduced and maybe everiween collisions would correspond to the downhill side and
angle-dependent coefficients of restitution. Even nearly pemot the uphill side.
fect adhesion of a bead to a plate can reduce the coefficient With the results of Sec. Ill B, this discrepancy can easily
of restitution by approximately 10%32]. be explained. It arises from the way these times are deter-
Also in the details of the motion, namely, in the times mined in the stochastic model. There, the time of flight de-
between collisions, there is some disagreement between egends on whether the previous impact occurred at the uphill
perimental result§33] and our simulation results. This dis- or downhill side of a ball on the plane. If it was on the uphill
crepancy between experiment and simulation may be exside, the time of flight is assumed to be,2g, disregarding
plained by the lower resolution of the experimentalthe details of the plane surface; if it was on the downhill side,
measurement techniques. The times between collisions ex-is assumed that the time of flight is &, . The next im-
tracted from noise measurements in experimentgtaaes-  pact angle is chosen at random, though from a distribution
lated into distancesof the order of the radii of the balls on that reflects the angles actually accessible to the particle due
the plane, i.e., much larger than in the simulations. As mento the obliqueness of the impact.
tioned above, we find best agreement of our simulation data By contrast, in the simulation it depends not on the exact
with experimental results for lower coefficients of restitution, location of an impact whether the time until the next one is
such as,=0.4. If e, is that low in the experiments, already determined byv, or v,, but rather on whether the ball is
the second and third collisions on the same ball take placeolling or jumping. If it is rolling, the time until the next
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collision is mainly determined by, and the distance be- V. SUMMARY

tween the point of onset of rolling and the next ball on the
plane. Though the probability of the ball already rolling is
higher towards the downhill than the uphill side, no distinc-
tion can be mada priori. The typical distance moved by a
rolling ball before colliding with the next one is usuallgs-
pecially for highere,)) much smaller tham, which gives a
much smaller time between collisions than the estimate i
the stochastic model, where this distance is alwaysl2he

We have presented molecular-dynamics simulations of a
single sphere moving on an inclined plane made rough by
glueing similar spheres to it. We have shown that the origin
of the friction force experienced by the moving sphere in a
certain range of inclination angles is essentially the same as
An the two-dimensional case discussedi2]. In the steady
state, the moving ball tries to adjust its velocity to each par-

ball is jumping, the time of flight will be determined by or ticle on the plane it passes, i.e., it str_ives to move parqllel to
rather by a combination af,,v, and the exact location on a the surface. Adjustment of the velocny occurs in a series of
surface bump where the last impact took place. The randoiMall bounces on each ball that is passed, since in each col-
choice of impact angles in the stochastic model, even if ifision velocity r_lormal to the surface is Io;t. If this adjustment
takes place under certain geometrical restrictions, is anothéould be achieved permanently, as it would for a ball
important difference. In the simulations, we found that in thedropped on a perfectly smootthough maybe microscopi-
steady state, if the ball is jumping, successive impacts argally rough plane, the ball would never reach a steady state.
highly correlated since the ball is moving in a preferred di-However, since the direction of the plane surfdce., the
rection and there are a few impacts on the same ball on th@ngent to the planehanges abruptly every time the moving
plane. Especially on the uphill side, the ball may be premasphere passes from one surface asperity to the next, this ad-
turely stoppedcompared to the time of flight calculated by justment can never succeed completely. In this first collision
disregarding the details of the surfacén the stochastic with each ball on the plane part of the previously tangential
model, this is taken into account only in calculating the pos~elocity is transferred to normal velocity due to the change
sible impact angles, but not in the calculation of the time ofin the direction of the surface. This new normal velocity is
flight. Therefore, the stochastic model on average overestsubsequently dissipated in the same way.
mates the time of flight. The coefficient of restitution mainly determines how
Besides these differences in the details of the motionmany collisions with each ball on the plane are necessary to
there is also a quite significant discrepancy between someissipate all or a large amount of this velocity. The main
global experimental and simulation results and the stochastienportance of the roughness of the plane is the continuous
model. In the stochastic model, a linear dependenag @h  conversion of energy gaingéh moving parallel to the sur-
sing is found for 6sd<10 at angles of inclination face to energy that can be dissipated. This is achieved by
0.1ssin #=<0.3 and the whole steady-state region extenddgransferring velocity from the tangential direction to the nor-
over a range 0.02sin #<0.45 for thesab. These angles of mal direction. The plane thus prevents the particle from
inclination are far too high compared to the range found for‘collapsing” on the plane permanently. We found that a
the steady state in experiments and simulations. The reassteady state can only be reached if this “collapse” or at least
probably is that the randomness introduced in the stochasti& substantial reduction f, is achieved on most balls on the
model leads to much higher dissipation than experienced bplane that are passed. If it can be achieved, it is unimportant
the particle in experiments or simulations. In the simulationsn how many collisions this happened; hence results the in-
we find as well that the more random the particle motion getsensitivity ofv, to e,. This means that in the steady state,
(like for high e, as compared to low,), the higher dissipa- the friction force exerted on the particle by the rough plane is
tion gets. In the steady state, it seems to be more advantanaffected by the velocity loss in a single collision and only
geous for the particle to keep as closely to the plane as posletermined by the geometrical roughness of the surface.
sible, i.e., to dissipate all the normal velocity gained in  With the mechanism that maintains the steady-state veloc-
moving from one particle to the next as soon as possible, anily we could also explain the details of the motion such as
then move parallel to the surface until the next abrupt changdistributions of impact angles and distributions of times be-
in the surface direction takes place. However, especiallyween collisions. The source for differences between the
when the motion starts to get more irregular, the stochastitwo-dimensional and three-dimensional cases has become
model should be appropriate for describing the motion, butlear. The diffusion coefficients in the transverse and longi-
still gives a steady state. tudinal directions were found to collapse on a decreasing
The reason for the existence of a steady state for verfunction of sing if D, was scaled byP?. The exponenp
large 6 results from the absence of rotation in the stochasticlightly depended ore, since D, did and for e,=0.4,
model. If the particle cannot rotate, but experiences friction,3~1.5 was found. By contrasD, hardly seemed to be af-
the angle region for which a steady state exists shifts towardiected by eitheb or e,. A qualitative explanation could be
significantly larger6, compared to a rotating particle. In given for some of these properties with the help of the details
molecular-dynamics simulations of the two-dimensionalof the motion.
case, where particle rotation was excluded, we found a Our simulation results have clarified many points in the
steady-state region for Ossin #<0.4 for ®=2.25 and a motion of a single particle on a rough inclined plane, though
friction coefficientu=0.13[34] (the sameu as used in the some details are still unclear and an analytical approach is,
stochastic model Since there is friction present in the sto- contrary to the two-dimensional case, still lacking. However,
chastic model, but the particle cannot rotate, friction is anthe main reason for this lack is the fact that the disorder of
additional source of dissipation that obviously extends regiorour plane is not as well defined as in the two-dimensional
B to significantly higheré. case and cannot be incorporated in a similar approximation
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as easily as in the two-dimensional case. Still, our simulapipe, where contact with the boundaries mainly comes about
tions have revealed one important property of the motion oby the fluctuations in the motion. Work along these lines is
the ball that might be of relevance also in more complicatedn progress.

flows, namely, the independence of the mean properties in

the steady state &, . Th_ough in more complicated flows th_e ACKNOWLEDGMENTS
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