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How transversal fluctuations affect the friction of a particle on a rough incline
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We present molecular-dynamics simulations of a sphere moving down an inclined plane consisting of
similar spheres of smaller size. For a certain range of inclinations, the sphere moves down the plane with a
mean velocityv̄xÞ0. We investigate the properties of the motion in this steady state and the limits for its
existence for a certain set of parameters. It is found that the steady-state velocity of the particle is independent
of material properties and depends only on the geometry of the system. This means that the particle experi-
ences an effective velocity-dependent friction force, with an effective ‘‘viscosity’’ determined only by the
geometry. The fluctuations of the motion, however, can depend on the coefficient of restitutionen . For
example, the diffusion coefficientDx is influenced byen , but hardly depends on the roughness of the plane,
while for Dy the reverse is true. The range of the inclination angle and the roughness for which a steady state
exists also depends onen . We discuss how these results can be understood by considering the details of the
motion. @S1063-651X~97!09509-3#

PACS number~s!: 46.90.1s, 07.05.Tp, 46.30.Pa, 83.70.Fn
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I. INTRODUCTION

Granular materials recently have received increasing
terest from the physics community@1#. This interest certainly
is due to their practical importance, but even more so to
fact that they represent an easily observable system far f
thermodynamic equilibrium. Even seemingly simple gran
lar systems can show surprisingly complex behavior. H
we will discuss such a system: a single sphere moving
an inclined plane roughened by gluing spheres to its surf
Figure 1 shows a schematic drawing of the setup.

This system already has been the subject of a numbe
experimental@2–9# and theoretical@10–13# investigations,
but still no complete understanding of the motion h
emerged. The reasons for the strong interest in this system
in the hope of gaining some understanding of the proper
of granular flow on inclined surfaces, such as avalanch
@14# and segregation in flow in inclined chutes@15#, or in
rotating drums@16–19#, as well as questions about the st
bility and steady-state properties of flow on inclined surfa
in general.

The advantage of having only a single particle move in
otherwise fixed environment is the nearly perfect control
all important parameters: The slope of the plane can
fixed ~and does not vary in time as in an avalanching sa
heap or a rotating drum!, as well as the roughness of th
plane by choosing the radiusR of the moving particle and
the radiusr of the particles on the plane. The particle can
introduced on the plane with a well-defined starting veloc
which is important since this may affect its motion. F
many-particle flow in inclined chutes it is still unclear ho
the flow is affected by the way particles are introduced i
the system@20#. The main questions this system poses
the following: Given a size ratioF5R/r of the particles,
i.e., the roughness of the plane, and an inclination anglu,
will the particle reach a steady state and if so, is it indep
dent of the initial conditions? How does the friction forc
561063-651X/97/56~3!/3645~12!/$10.00
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exerted on the particle by the bumps on the plane scale
these parameters and how does it depend on material p
erties such as the coefficient of restitution and the frict
coefficient of the particles?

Though we will also discuss briefly the conditions for th
existence of a steady state withv̄xÞ0, here we focus mainly
on the properties of the motionin the steady state. Experi
mentally, it was found that the mean velocity is proportion
to the driving force, which was interpreted as being due to
effective viscous friction. The mean velocity scales with
power of the size ratioF, i.e., for the mean velocityv̄x of the
ball in the steady statev̄x;Fa sinu, where a seemed to
depend slightly on the preparation of the rough plane. M
sured values fora were 1.5@3–5# and 1.05@8,9# on a plane
covered with glass spheres, with different density of t
packing and different sizes of the glued beads, and 1.3 o
plane covered with sand@7#. The linear dependence of th
velocity on the driving force is surprising on first sight b
cause the velocity loss in each impact should be proportio
to the mean velocity, and the number of impacts per u
time should be proportional to the velocity as well. Th
yields a friction force proportional tov̄x

2 @21# and hence
v̄x;Asinu. This behavior was actually found in quasi-two
dimensional systems~a ball moving along an inclined line o
balls! in both experiment and simulation@2,6,11,12#, where
it can be explained using a detailed model of the mot

FIG. 1. Schematic drawing of the ball on the plane.
3645 © 1997 The American Physical Society
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3646 56S. DIPPEL, G. G. BATROUNI, AND D. E. WOLF
@12#. On the inclinedplane there seems to be a crossov
from linear behavior to a square root for very large a
heavy balls and smallu @22#. The reasons for this remai
completely unclear so far.

The main difference between the two-dimensional a
three-dimensional cases is that in three dimensions~3D! the
ball has an additional degree of freedom. It can~and does!
move in the direction perpendicular to the inclination of t
plane, due to oblique impacts with balls on the plane. T
leads to increased dissipation of energy compared to
since transverse motion ‘‘drains’’ the particle of a part ofvx ,
as transverse motion is only dissipative. Though certainlyvy
can be transferred back tovx , this only means giving back
part of what previously had been lost, so there is only
dissipation due to the additional degree of freedom. But w
this increase should lead toviscousfriction is still unclear.

It thus is necessary to investigate the fluctuations of
motion more closely since they seem to be the key differe
between 2D and 3D. Indeed, the argument leading
v̄x;Asinu disregards fluctuations, and as we have shown
previous work@12#, these can be neglected in 2D since the
the motion is very regular. In 3D, they should be of grea
importance. Recent experimental efforts have thus conc
trated on the measurement of the dispersion properties o
plane, i.e., on the measurement of diffusion coefficients
their dependence onF and u @8#. These experiments hav
yielded some surprising results, for example, insensitivity
the longitudinal diffusion coefficient toF @8#, but the details
of the motion that might explain them are inaccessible
experimental observation. Computer simulations can prov
this additional information as well as allow variation of m
terial properties far more freely than possible in experime

In this paper, we present a fully three-dimensional sim
lation of this system. Previous simulations were either
stricted to two dimensions@6,11,12# or dealt only with ques-
tions of static equilibrium of balls on the plane@4#. The
outline of the paper is as follows. In Sec. II we will briefl
explain the extension of the simulation method we used
2D to 3D. We will then discuss the results obtained. The
we will first present more global properties of the moti
that can be compared with experimental results, as wel
the influence of material parameters such as the coefficien
restitution on these properties. To explain some of these
sults, in the following we concentrate on the details of t
motion inaccessible to experiments. As in the tw
dimensional case, these reveal the dissipation mechanism
tive in the steady state and thus explain the insensitivity
some of the global properties of the motion to material pr
erties. Finally, we discuss the consequences this has fo
differences and common features of the two- and thr
dimensional cases and compare our results with experim
and a previously proposed model of the motion.

II. SIMULATION METHOD AND PREPARATION
OF THE PLANE

We simulate the motion by the molecular-dynam
method@23,24#, which was introduced to the simulation o
granular materials by Cundall and Strack@25#. Particles are
treated as ‘‘soft’’ ~i.e., they can overlap! and interact with
some repulsive force only when they overlap. A variety
d
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forces has been used to accomplish this@26#. Here we use the
same forces as in our simulation of the two-dimensional c
@12#, i.e., the force acting between particlesi and j is given
by

FW i j 5FnnW 1FssW, ~1!

where

Fn52knj2gnj̇ ~2!

and

Fs52min~ ugsvsu,umFnu!sgn~vs!. ~3!

Herej denotes the~virtual! overlap of the particles,m is the
Coulomb friction coefficient, andkn , gn , andgs are mate-
rial parameters relating to the stiffness and dissipative pr
erties of the material~for a detailed explanation see@12#!.
The only difference between the use of these forces in
and 3D lies in the definition of the unit vectorsW ~the defini-
tion of nW does not change as compared to 2D!. In 3D, the
direction of the tangential force is given by theprojectionof
the velocity vectorvW on the plane perpendicular tonW , since
contrary to the two-dimensional case there is a whole pl
perpendicular tonW . Thus

nW 5
rW j2rW i

urW j2rW i u
, ~4!

sW5
vW j2vW i2@~vW j2vW i !•nW #nW 1nW ~RjwW j2RiwW i !

uvW j2vW i2@~vW j2vW i !•nW #nW 1nW ~RjwW j2Riwi !u
. ~5!

Force~3! can be extended to 3D trivially because it depen
only on the instantaneous values of the velocity and the o
lap ~contrary to some other force laws@27#! and thus is not
affected by any memory of changes in the direction ofsW.

In all simulations presented here we used the parame
kn523105 N/m, gs51000 kg/s,m50.13, r 50.5 mm, and

M5 4
3 pR3r for the mass of the rolling ball with

r57.8 g/cm3. The values of these parameters were cho
to match the steel balls used in@6,5,8# and the size of the
glass beads glued onto the inclined plane@8#; the choice of
kn leads to a collision time of the order of 1025 s. For the
choice of gs , which is mainly a technical parameter, s
@12#. The dampinggn is determined by fixing the norma
coefficient of restitutionen52vn

f /vn
i , defined by the ratio of

final and initial normal velocities. In this paper, we will sho
results for 0.4<en<0.8.

The main problem in the three-dimensional simulation
it is to be compared with experiments, lies in producing
plane with similar densityand disorder as in experiments
especially asdisordercannot be easily quantified. In the ex
periments the rough plane was produced by placing a s
of contact paper on a glass plate and then spreading g
beads onto it slowly moving from one edge of the plane
the other. This gave area fractions of glued beads in a ra
from 0.68 to 0.74. Algorithms designed to produce rand
two-dimensional packings, for example, the random sequ
tial adsorption model@4# or more refined versions of it, can
not reach such a high density. To be able to compare
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56 3647HOW TRANSVERSAL FLUCTUATIONS AFFECT THE . . .
results with experiments, we thus used a scanned config
tion of the ‘‘real’’ plane in the simulations. The section o
the plane we used contained 4085 particles and the size
11.2534.35 cm2. The coordinates of the particles on th
boundaries were shifted slightly to create smooth perio
boundaries.

III. SIMULATION RESULTS

A. Average properties

In the simulations presented here, the ball was launc
onto the plane with a rather high starting velocityvx and
vy50. When the ball reached a steady state withv̄xÞ0 for a
certain combination ofF and u, we averaged over severa
runs with different starting velocities and starting position
In each run, the velocity fluctuated somewhat and also
mean velocity varied a bit more from run to run than in 2
Figure 2 shows typical velocity distributions. The tail t
wards smallerx velocities corresponds to largery velocities
~see Fig. 3!, i.e., to parts of the motion where a lot ofx
velocity could be transferred to they direction. Very similar
distributions and correlations ofvx and vy were found in
experiments@8#. In Fig. 4~a! we plot the velocityv̄x for
various size ratiosF as a function of sinu for en50.8. Ob-

FIG. 2. Histograms of the velocity distributions forF55 and
u50.05.
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viously for very largeF the velocity curves look more like
Asinu ~though it is hard to decide if the exponent is rea
1/2!, whereas for smallerF the curvature seems to decreas
Unfortunately, the range of inclination angles for which
steady state can be found decreases at a certain point as
and it is very hard to decide over such a small range
inclination angles whether the curves are really linear
small F, as seen in the experiments. In Fig. 4~b! the veloci-
ties were scaled by a factorF2a with a51.5. This is the
same value as that found by Riguidel@3–5#. The sudden rise
of the velocity curves corresponds to a similar intermitte
motion as observed in two-dimensional simulations@12# and
three-dimensional experiments@5#, where the ball still main-
tains a mean constant velocity, but with stronger fluctuatio
and short accelerating and decelerating phases.

Figure 5 shows the phase diagram obtained from th
velocity curves. Byphaseshere we denote the differen
kinds of motion. In phaseA the particle decelerates an
comes to a stop, independently of the velocity with which

FIG. 3. Correlation ofvx andvy for the same parameters as
Fig. 2.

FIG. 4. ~a! Mean velocities foren50.8 andF54 ~circles!,
F55 ~squares!, F56 ~triangles!, F57 ~stars!, and F58 ~dia-
monds!. ~b! Scaling of the mean velocities withF.
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3648 56S. DIPPEL, G. G. BATROUNI, AND D. E. WOLF
was launched on the plane; in phaseB it reaches a stead
state, independently of the starting velocity; and in phaseC it
accelerates without reaching a steady state. In regionB,
sometimes the ball will come to a sudden stop after hav
previously traveled with constant velocity because it
trapped by a large hole on the plane. This is very clea
distinguishable from stopping in regionA, where the ball
continuously slows down from the start of the motion.
detailed analysis of this stopping can be found in@28#. Here
we are more concerned with motion in regionB.

The steady-state regionB is much smaller than in experi
ments and shifted towards smalleru. In 2D, we have shown
that decreasing the coefficient of restitution will hardly affe
the steady-state velocity, but instead shift the phase boun
uBC(F) towards larger values ofu for a givenF. One reason
that our range of stableu is too small might be the use of to
high a coefficient of restitution. Thoughen50.8 is appropri-
ate~and even a bit too small! for steel on glass, it is unclea
how strong the effect of the combined setup~glass beads on
contact paper on glass plate! is. The glued glass beads are n
immovably stuck and might shift slightly during impacts.
test performed on the real plane by dropping a steel bal
the horizontal plane resulted in only very little rebound. St
this does not help in measuring the coefficient of restitut
since it cannot be controlled under what angle the ball h
ball on the plane, so pre- and postcollisional normal velo
ties are simply not known. We also checked that just like
the two-dimensional case, the coefficient of frictionm does
not influence the mean velocity.

To show the effect ofen , we plot in Fig. 6 the velocity
curves foren50.4 and 0.8 together. Here a different pictu
emerges. The curves already exhibiting definite curvature

FIG. 5. Phase diagram foren50.8.

FIG. 6. Mean velocities foren50.8 ~open symbols! anden50.4
~closed symbols! andF53 ~stars!, F54 ~circles!, F55 ~squares!,
F56 ~triangles!, andF58 ~diamonds!.
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en50.8 hardly deviate from those foren50.4. In the inter-
mediate range ofF curves that foren50.8 seemed rathe
linear now prove to be part of lines with definite curvatur
For even lowerF, however, the curves do not fall as nice
on top of each other and there is a small but visible diff
ence in the curvature. For very lowF ~for which we did not
even find a steady state foren50.8! the velocity again seem
to depend linearly on sinu. Figure 6 also throws some doub
on the scaling that was found in previous work and in Fig.
It is obvious that the velocity curves foren50.4 will not
scale with the same exponent as the ones foren50.8. In-
deed, only taking into account the upper parts of the curv
where a steady state was found in recent experiments,
will ‘‘scale’’ with an exponenta51.05 @8#. Our simulation
results are not very promising as far as the scaling withF is
concerned.

To us it is not clear yet what conclusions should be dra
from this. There might be a passage from linear behavio
a square root, for which the criticalF depends on the coef
ficient of restitution. But the seemingly linear curves mig
as well just be part of a square root and the curves too s
to decide this. It is also not completely clear if there might
a fundamental difference between experiment and sim
tion. We will return to this point later, in the light of othe
simulation results. The experimental values look linear,
the range of angles over which they were obtained is
small that they are fitted equally well by a line and a squ
root.

B. Fluctuations

As stated before, the velocity of the particle fluctuat
around the mean velocity depicted in Figs. 4 and 6. Th
fluctuations should be interesting for the ability of the pla
to promote segregation in the transverse direction. In ad
tion, it should be expected that fluctuations affect the ph
boundaries~the stronger the fluctuations in the longitudin
direction, the higher the probability that close touAB the ball
may be trapped and that close touBC the ball may achieve a
velocity that cannot be braked anymore!. In the direction
transverse to the main direction of motion, the particle u
dergoes a diffusive motion@8,29#, and in a reference frame
moving with v̄x with the particle, the same is true for th
longitudinal direction. Though the corresponding veloc
distributions are not perfectly Gaussian, as is obvious fr
Fig. 2, we define transverse and longitudinal diffusion co
ficients by

Dx5 lim
t→`

^@x~ t !2x~0!2 v̄xt#
2&/2t, ~6!

Dy5 lim
t→`

^@y~ t !2y~0!#2&/2t. ~7!

In Fig. 7 the diffusion coefficients obtained in our simul
tions for various size ratios anden50.4 are shown. They
were obtained by performing several long runs~100 s each!
with different initial conditions and then cutting these dow
to pieces of different length, up to 3 s each to perform the
ensemble average. Because of the anisotropy in the sy
introduced by gravity, we expect anisotropy in the diffusi
coefficients as well and thus compute them separately. C
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56 3649HOW TRANSVERSAL FLUCTUATIONS AFFECT THE . . .
trary to @29#, where we plottedDx andDy as functions of the
mean velocityv̄x , here we show them as functions of sinu.
This is the quantity that in any practical application, whe
segregation might play a role, will be important since t
inclination will usually be at some fixed value while th
velocity may evolve freely. In Fig. 7,DxF

1.5 instead ofDx is
plotted since we found that this makesDx and Dy fall ap-
proximately on the same curve.

The diffusion coefficients we find are in good agreem
with experimental values@8,29# and are obviously decreas
ing with increasing angle of inclination. Note that whenDx
is scaled byF1.5, the values forDx andDy are of approxi-
mately the same magnitude, i.e., there is aF-dependent an-
isotropy in the diffusion coefficients. A similar anisotropy
found in sedimentation, where, however, the diffusion co
ficient corresponding to the mean direction of motion
larger than the one corresponding to the transverse direc
@31#. In our case, the reverse is true.

In Fig. 8 the diffusion coefficients are shown for two di
ferent values ofen , this time without any scaling. Thoug
for Dy the data foren50.8 fall more or less on the sam
curve as those foren50.4, forDx they seem to be larger b
approximately a factor of 2 foren50.8 as compared to
en50.4. They thus cannot be scaled by the same factorFb

to make them collapse on theDy curve. We will return to
this later and discuss possible reasons, when we know m
about the details of the motion.

C. Details of the motion

In the two-dimensional case, many of the global prop
ties of the motion could be explained by analyzing details
the motion, such as distributions of the points on the surf
bumps that were impacted by the moving ball, or corre
tions between these and the normal and tangential veloc
in these impacts@12#. They revealed that the motion in th
two-dimensional case, even if the arrangement of balls
the line is disordered, is very regular. This regularity resu
from the tendency of the ball to collide with the same ball
the line many times, thus losing most of its normal veloci
retaining only tangential velocity with respect to the surfa
of this particular ball. In the steady state, this leads to qui
well-defined tangential velocity, with which the moving ba
rolls onto the next ball on the line. With respect to the n
ball the velocity has a normal component. The steady sta

FIG. 7. Diffusion coefficient foren50.4 and various size ratios
F53 ~circles!, F54 ~squares!, F55 ~diamonds!, andF56 ~tri-
angles!. Open symbols,Dy ,b50; full symbols,Dx ,b51.5.
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maintained because tangential velocity gained in mov
down the plane is converted to normal velocity, which
then dissipated. Because even on a line with disorder
distance throughout which the moving ball can achieve t
loss of normal velocity before impacting the next ball
relatively well defined, this leads to strong regularity in t
motion, with collisions at approximately the same points
the surface of each ball.

In 3D, one would expect this not to hold any more, sin
in 3D there are many influences that prevent such str
regularity. When the ball collides with a ball on the plan
slightly sideways, it is deflected towards the side. Thus
direction of motion changes at this point. Also the distan
traveled over this ball before hitting the next one may
much smaller than the diameter of a ball on the plane. So
of these possibilities are shown on the left-hand side of F
9, assuming that the direction of motion is hardly affected
interaction with the curved surface of the ball. The ball mig
also roll down the plane without going over the tops of t
balls on the plane, moving mainly in the valleys formed
the bumps of the surface. A completely different possibil
is that it might be deflected by the first impact with a ball
the plane so strongly that it could jump over to another b
immediately. Considering these possibilities, it has to be k
in mind that the area on the balls on the plane that is ac
sible to the moving ball is very small and only very slight
curved due to the large values ofF.

The details of the motion we focus on here are essenti
the same as in the two-dimensional case, namely, the ti
of flight between two impacts with balls on the plane and
exact locations where balls on the plane are hit. Since th

FIG. 8. Dependence of diffusion coefficients onen . Full sym-
bols, en50.8; open symbols,en50.4. For the variousF values,
symbols are the same as in Fig. 7. The stars correspond toF55.5,
en50.8.
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3650 56S. DIPPEL, G. G. BATROUNI, AND D. E. WOLF
details are extremely hard to access in experiments, c
puter simulations provide a useful tool to supplement exp
mental data. These quantities are of interest because
times between collisions give an estimate of the time dur
which energy can be gained by the particle, while the ang
where the impacts take place show how far the detailed
pology of the plane is explored by the ball.

Figure 10 shows distributions of times between two s
cessive collisions for two different inclination anglesu and
two strongly different coefficients of restitution. The valu
of u were chosen such that they lie close to the lower a
upper boundaries of the regionB, respectively, for the coef
ficient of restitution in question~see Fig. 6!. We separated
impacts on the uphill facing side of the balls on the pla
~uwu>p/2; see Fig. 9! from those on the downhill facing sid
(uwu,p/2). As a matter of fact, this is quite an arbitrary wa
of separating the distributions, as we will see, but we adop
to enable later comparison with results from the stocha
model from Ref.@10#. The most important difference be
tween collisions atuwu>p/2 anduwu,p/2 is that in a colli-
sion atuwu>p/2, vx is transferred tovz , while for uwu,p/2,
vz is transferred tovx . This means that collisions on th
uphill facing side of the bumps drive the particle away fro
the plane, while collisions on the downhill facing side dri
it towards the plane. As in 2D, the times between collisio
are on average smaller~and some very close to zero! for
uwu,p/2 than foruwu>p/2, in contradiction to@10#. When
the inclination angle increases, both distributions
broader, but the pronounced decay of the distribution
uwu,p/2 remains, whereas the peaks of the distribution
uwu>p/2 move towards larger times. Multiplying the time
between collisions by the mean velocity, we find that t
corresponding distances passed between impacts are
smaller than a particle radius.

Obviously, the overall shapes of the distributions depe
far stronger on the coefficient of restitution than on the
clination angle. While the total distribution foren50.8 is
essentially a decaying function, the distribution foren50.4
rather consists of multiple peaks, getting narrower w
smaller times of flight. In addition, the form of the distribu
tions corresponding touwu,p/2 anduwu>p/2, respectively
changes, losing some peaks foruwu>p/2 and gaining some
for uwu,p/2. While the shape of the distributions is large
unaffected byu, they generally extend towards larger tim
with increasingu, and foren50.8, a shoulder develops fo
higheru.

FIG. 9. Definition of the impact angles. Left: view of a ball o
the plane from the top and definition of the azimuthal anglew. The
dashed arrows show possible paths the moving ball may t
Right: view of a ball on the plane from the side and definition ofg.
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A quantity that has not been measured experimentally
and would indeed be very hard to measure, is the distribu
of impact angles, i.e.,whereexactly impacts take place o
the ball on the plane. The definition of the angles is given
Fig. 9. Figures 11 and 12 show these angle distributions

e.

FIG. 10. Histograms of times between collisions forF55 and
~a! en50.4, u50.05, andv̄x58.2 cm/s;~b! en50.4, u50.08, and
v̄x510.7 cm/s; ~c! en50.8, u50.03, andv̄x55.1 cm/s; and~d!
en50.8, u50.05, andv̄x57.8 cm/s. Full line, total distribution;
dashed line, previous impact atuwu,p/2; dot-dashed line, previous
impact atuwu>p/2.
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56 3651HOW TRANSVERSAL FLUCTUATIONS AFFECT THE . . .
the same cases as the distributions of times of flight in F
10. In the case ofg we plot N(g)/sin(g) to normalize the
distributions by the size of the corresponding volume e
ment.

Unfortunately, even though foren50.4 some structure
seems to be evident, it is not at all as clear from these

FIG. 11. Histograms of impact anglesg, same parameters as i
Fig. 10.
.

-

s-

tributions as in the two-dimensional case what exactly
happening as the ball moves down the plane. As in the c
of the times of flight distributions, foren50.8 the shape of
the distributions does not change very much with increas
u, though the one corresponding touwu>p/2 develops a pro-
nounced peak. Figure 11~c! corresponds to a run where th
ball, after having moved a distance of 2 m on theplane with
constant mean velocity, suddenly stops because it
trapped by a large hole; hence results the small peak
g50.3, which corresponds to the depth of the hole where
ball got trapped. Foren50.4, the distributions again chang
quite significantly in form with changingu, just like those for
the times between collisions. Another point that might
noted is that foren50.4 the distribution shows more colli
sions towards the top of balls on the plane with increasingu,
while for en50.8 the number of collisions at the top of bal
on the plane decreases with increasingu. This increase and
decrease, respectively, is entirely due to the change in
distribution corresponding touwu,p/2.

Though the distributions for times of flight and impa
anglesg were already separated according to the side of
ball on which the impact takes place, it is quite instructive
have a more detailed look at the azimuthal anglesw where
impacts take place. Figure 12 shows these distributions
the same cases as depicted in Figs. 10 and 11. Again, t
are quite strong differences between the different coefficie
of restitution. While foren50.8 the distribution for smalleru
is uniform, for largeru it starts to develop a peak on th
uphill side, which clearly corresponds to the peak forg in
Fig. 11~d!. For en50.4, most impacts are on the uphill sid
of balls on the plane and only very few on the downhill si
~with a uniform distribution on the uphill side! for small u.
For largeru, this uniform distribution forms a peak similar t
the one foren50.8 and two additional peaks develop sym
metrically on the downhill side.

All these details taken separately give a somewhat c
fusing picture. But adding one more detail that can be
tracted from the simulation, the mechanism providing t
friction force that maintains the steady-state velocity b
comes clear. The quantity that reveals what happens in d
on each ball on the plane is the loss of normal velocity
particle passed, i.e., how the normal velocityafter the last
impact with a certain ball relates to the normal velocitybe-

FIG. 12. Histograms of impact anglesw. The vertical dashed
lines indicate 6p/2. F55, en50.4, and u50.05 ~full line!;
u50.08 ~dot-dashed line!; en50.8 and u50.03 ~dotted line!;
u50.05 ~dashed line!.
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3652 56S. DIPPEL, G. G. BATROUNI, AND D. E. WOLF
fore the first impact with the same ball on the plane. Figu
13 shows the relation of these velocities for two differe
coefficients of restitution at the same angle of inclination
the plane.

Obviously, all points cluster around integer powers ofen ;
for en50.4 most of the time all normal velocity with respe
to the ball passed is lost, i.e., most points concide with thx
axis. In both cases, only the points wherevn

f Þ0 are shown.
This is the reason for the small number of points in F
13~b!, because here, most of the time, allvn

i can be dissi-
pated on each ball passed. In Fig. 13~b! 98% of the points
coincide with thex axis, versus only 7% in Fig. 13~a!. Since
in the tangential direction nearly no velocity is dissipate
this means that the amount of dissipation on passing a ba
simply determined by the normal velocity in the first impa
and the number of collisions with this particular ball~which
can be read off from Fig. 13 for each point!. In fact, this is
very similar to the two-dimensional system@12#; the only
difference is the larger variation of the number of collisio
per ball in the three-dimensional case. We will discuss
results obtained and their implications for the mean prop
ties of the motion in the following section.

IV. DISCUSSION OF THE RESULTS

A. Discussion of the simulation results

With the help of the last observation in the precedi
section, the results shown previously on the distributions
times between collisions, impact angles, etc., can be

FIG. 13. Relation of normal velocity directly after the last im
pact with a ball on the plane to normal velocity directly before t
first impact with the same ball forF55, u50.05, and~a! en50.8
and~b! en50.4. The lines denote integer powers of the correspo
ing restitution coefficient.
e
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plained quite easily and the mechanism by which the part
maintains the steady-state velocity becomes clear. Es
tially, this mechanism is the same as in the two-dimensio
case. Obviously, the ball does not move down the plane
randomly hopping from particle to particle, but rather, wh
it arrives at a bead, it collides with it several times. Since
are dealing with a single ball, it can roll freely and thus mo
dissipation comes from the part of the normal componen
the velocity lost in collisions andnot from frictional con-
tacts, where the tangential velocity might play a role.

As Fig. 13 shows, there are usually a number of impa
with each ball on the plane. In this succession of impacts,
velocity of the moving ball aligns with the tangent to th
surface of the ball it is passing since it gains velocity in t
tangential direction and loses velocity in the normal dire
tion. If this alignment succeeded for the whole surface of
plane, as it would on a perfectly smooth plane, the b
would go on accelerating. However, our plane is too rough
allow this. Whenever this alignment succeeds, the roll
ball will roll onto another ball on the plane from which
rebounds. This collision transfers velocity tangential to t
local plane surface to velocity normal to the local plane s
face, which can then be dissipated. This mechanism is
same as in the two-dimensional case; the only differe
here is that there is a much larger variation in the distan
available for the ball to adjust to the surface of a ball it
passing in 3D~see Fig. 9!. This larger variation is also ob
vious from Fig. 13~a!: In a very large number of cases
especially close touBC , there are only one or two impact
with each ball on the plane because very often a ball on
plane is passed close to the side. Thus, quite often, the
justment succeeds only imperfectly for highen . However,
this does not seem to be too important as long as once
while all vn is lost. Already in the two-dimensional cas
such behavior was observed for high coefficients of rest
tion. Such ‘‘leftover’’ vn ~or rather the larger part of it, som
transfers back intov t! is added to the freshly gainedvn and
partially dissipated on the next bump. The main effect
leftovervn , which tends to destabilize the motion, is the fa
that this leads to a first collision with the next bump
smallerg, which leads to less efficient transfer ofv t to vn .

Another reason for the larger variation in the number
collisions with the balls passed is the fact that this first i
pact, besides transferring tangential velocity to normal vel
ity, may also change the direction of the tangential veloc
with respect to the plane. This change should be the m
source of the diffusive motion the particle performs in t
transverse direction. When the particle rolls, the curvature
the ball surface on which the particle moves is so small t
it has only a minor influence on the motion~recall the typical
range ofg accessed by the ball as shown in Fig. 11!.

Having identified the mechanism by which the stea
state is maintained, we will now discuss how this helps us
understand better the details of the motion presented in
III. Let us first take a look at the distributions ofg in Fig. 11.
For en50.4, dissipation is so strong that already after t
first impact balls have lost so much normal velocity that th
do not jump very far. The drop of the distribution toward
g50 is not an indication that the ball does not pass over
top of the bumps, but is rather due to the fact that it does
manage to jump over the top, but rolls. This is exactly t
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56 3653HOW TRANSVERSAL FLUCTUATIONS AFFECT THE . . .
same behavior we found in the two-dimensional case
small inclination angles. The decay of the distribution
wards largerg and partly the small peak for impacts on th
downhill side corresponds to the distribution of distanc
between balls on the line. Note that whenever a peak app
in the distributions shown, it is at approximately the sa
point and has approximately the same form. Foren50.8,
especially close touAB , there are so many collisions on ea
ball that the number of collisions remains high close tog50,
while for higher inclination angles, the peak is quite prom
nent. This is probably due to the fact that the first jump
each ball carries the ball far enough away from the first
pact, so the peak does not get smeared out so strongly a
lower inclination angles. This is probably the same rea
for the partly emerging second peak for impacts on the up
side in Fig. 11~b!.

The distributions of impact anglesw in Fig. 12 confirm
this. Whereas foren50.4 at lower angles of inclination
nearly all impacts are on the uphill side, we find two ne
peaks emerging for higher angles of inclination, obviou
corresponding to the second peak close tog50 and the third
one close tog50.1 in Fig. 11~b!, i.e., balls now manage to
jump over to the downhill side. Foren50.8, we again find
the same characteristics as described forg, i.e., with increas-
ing u there seem to be more impacts on the uphill side t
on the downhill side. The main reason is that the first imp
in most cases takes place on the uphill side, but either
first impact may remain the only one or the following on
will occur in its vicinity. The distributions of the times be
tween collisions~Fig. 10! show these multiple collisions
quite clearly foren50.4, while foren50.8, the distributions
for the single collisions are smeared out too much to
distinguished.

All these details help one to understand some of the g
bal properties of the motion discussed in Sec. III A. The f
that the steady-state velocityv̄x , and thus the effective fric-
tion force ‘‘felt’’ by the particle, hardly depends on the co
efficient of restitution can be explained in the same way a
the two-dimensional case. Since the amount of energy d
pated mainly depends on how much tangential velocity
converted into normal velocity in the first collision with eac
ball on the plane passed, which in turn is determined only
the geometry of the impact, but not byen , it is not surprising
that the steady-state velocity does not depend onen . The
same is valid for the lower boundaryuAB of the steady-state
region, just like in the two-dimensional case. The ball on
gets stuck when it cannot roll out of the deepest valleys
more. The upper boundaryuBC , however, does depend o
en becauseen determines how many bounces on each b
are necessary to lose a large part of the normal velocity w
respect to each ball before the next one on the plane is h
this is not possible, the ball accelerates.

Even if the angle of inclination is too large for the partic
to reach a steady state and it constantly accelerates, it tri
adjust its velocity to the direction of the surface. When t
ball has a considerably largez velocity, the locations~and
thus impact angles! of its collisions are uncorrelated: O
average it feels dissipation normal to the plane as a wh
and acceleration parallel to the plane. It is thus driven
wards the plane more and more. At some point of this e
lution, the particle starts to feel the structure of the pla
at
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when collisions get very oblique, not all impact angles a
possible anymore and impacts on the uphill facing side
particles on the plane are favored. But these impacts tran
velocity tangential to the plane into velocity normal to th
plane; the ball is thus driven away from the plane aga
While in the steady state the amount of velocity transfer
to the normal direction does not suffice to carry the ball o
to the next ball on the plane, in regionC it may kick the ball
up very high, thus allowing it to gain a larger amount ofvx
than it lost in this previous impact. In the accelerating
gime, the ball is driven towards and away from the pla
continuously. This results from a competition of the bal
efforts to align its velocity to the plane surface and viole
impacts on the uphill facing side of surface bumps, wh
drive it away again if it comes too close, i.e., the ratiovz /vx
gets too small.

Since the explanations we have just given are the sam
in the two-dimensional case, the question arises as
whether we can calculate the mean velocity as in the tw
dimensional case by treating the ball as completely inela
and perfectly rough. In the two-dimensional case, the dis
der of the plane can simply be incorporated into the calcu
tion by assuming the balls on the plane to be equally spa
with a spacing corresponding to the mean value of the
tribution of distances. Here this does not suffice. In the thr
dimensional case, it is also important to estimate the amo
by which the ball will be deflected in the transverse dire
tion. When moving at an angled with respect to thex direc-
tion, the ball suffers the same number of impacts as if it w
moving in thex direction since the number of collisions
suffers in crossing a certain length does not change. But
moving down the plane more slowly and thus gains ener
more slowly. Obviously, this additional dissipation has
strong influence on the motion, since in 3D the averageF
where the motion of a ball can be stable is significan
larger than in 2D. So far, we have not found a reasona
assumption that would incorporate this scattering in
transverse direction in a simple calculation since unfor
nately this amount of scattering changes with increas
plane inclination.

This leads us to a completely different feature in t
three-dimensional case, namely, the fluctuations of the
tion. In our case these are measured by calculating the
fusion coefficients corresponding to the longitudinal a
transverse directions of motion~separately, because the sy
tem is highly anisotropic!. Again, we can only discuss qual
tatively the possible reasons for theiru and F dependence.
As we have just explained, the very first impact of the mo
ing ball on each ball on the plane with which it interac
seems to be crucial in determining its motion over this sin
ball. One might thus expect that this is true as well for t
direction into which the ball is scattered in this single impa
Though the changesDvx andDvy in a single impact depend
on en , this dependence falls out of the quotientDvx /Dvy
that determines the change of direction in this impact. Si
the diffusion in the transverse direction is mainly due to su
changes in the direction of the motion, this is to be the rea
for the insensitivity ofDy to en . Dx should be composed o
two components: one resulting from scattering in they di-
rection, and thus related toDy , and another one resultin
from variations in the number of collisons per ball~i.e.,
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3654 56S. DIPPEL, G. G. BATROUNI, AND D. E. WOLF
variations in the loss of normal velocity per ball!. These
variations get stronger with increasingen and exist in the
two-dimensional case as well, which could be the reason
the dependence ofDx on en .

Far more puzzling is the dependence of the diffusion
efficients onF, namely, thatDx is independent ofF, while
Dy'FbDx , with an exponentb that seems to depend on th
coefficient of restitution. So far, we have not found an e
planation for the observation that the transverse coeffic
of diffusion depends on theF, while the longitudinal one
does not.

The slight falling tendency for the diffusion coefficien
with increasingu is easier to explain. Since we suppose th
the diffusion is largely due to the scattering of the ball in t
first impact with each ball on the plane it interacts with,
should depend on the distribution of these impacts. The m
head-on the impact, the smaller the scattering to the tra
verse direction, the more oblique, and the stronger this s
tering. Figure 11 shows that with increasingu, these impacts
became less oblique, so scattering should be reduced
thus diffusion should be reduced.

B. Comparison with experimental results and a stochastic
model of the motion

As already mentioned briefly in Sec. II, the agreement
simulations with experiments is not perfect. The mean
locities we find are slightly too high:uAB is lower than the
values found in experiments; foren values corresponding to
steel on glass collisionsuBC is smaller than in experiments a
well. The fluctuations~diffusion coefficients, etc.! are on av-
erage smaller in our simulations than in experiments, wh
might be a reason why the mean quantities are larger, s
in granular materials dissipation usually increases with
creased fluctuations~e.g., granular temperature! @30#. How-
ever, our simulation is not a perfect duplicate of the expe
mental setup. Some points that differ are the following. T
particles in the simulation are perfectly rigidly fixed to th
plane. They are perfectly spherical and monodisperse. T
conditions are not given in that rigor in the experimen
situation and it is not clear how important this might
especially for angles of inclination where a large part of
motion consists of rolling. The adhesion of balls on se
adhesive tape is probably not as perfect as one would w
for, which could lead to strongly reduced and maybe ev
angle-dependent coefficients of restitution. Even nearly p
fect adhesion of a bead to a plate can reduce the coeffic
of restitution by approximately 10%@32#.

Also in the details of the motion, namely, in the tim
between collisions, there is some disagreement between
perimental results@33# and our simulation results. This dis
crepancy between experiment and simulation may be
plained by the lower resolution of the experimen
measurement techniques. The times between collisions
tracted from noise measurements in experiments are~trans-
lated into distances! of the order of the radii of the balls o
the plane, i.e., much larger than in the simulations. As m
tioned above, we find best agreement of our simulation d
with experimental results for lower coefficients of restitutio
such asen50.4. If en is that low in the experiments, alread
the second and third collisions on the same ball take p
or

-

-
nt

t

re
s-
t-

nd

f
-

h
ce
-

i-
e

se
l

e
-
sh
n
r-
nt

x-

x-
l
x-

-
ta
,

e

with strongly reduced normal velocity and thus with far le
noise than the first one. In addition, the resolution of t
noise measurements is far smaller than in our simulations
in the experiments times between collisions as small as o
may not be resolved anymore. But if only the first collisio
with each ball on the plane is loud enough to be record
this means that not the time between single collisions
rather the time spent interacting with each ball on the pla
is measured. This time can also be extracted from our si
lations and is shown for two differenten in Fig. 14. We
plotted v̄xdt/r on thex axis to give an idea about the corre
sponding distances. These distributions agree nicely with
times between collisions measured in experiments.

In the stochastic model of Ref.@10#, a clear double-peak
structure is found, which disagrees with both simulation a
experiment. The times between collisions are of the sa
order of magnitude as in our model foruwu>p/2 for smallu,
while for uwu,p/2 they are of the same order of magnitu
as in experiments. The experimental data show no evide
of a double peak. In the stochastic model, these peaks
clearly separated from each other and the peak at sm
times corresponds touwu>p/2, i.e., to times after collisions
at the uphill side of balls on the plane. Even if we wou
interpret the decaying distribution and the very broad pea
Figs. 10~c! and 10~d! as two peaks, they disagree with th
stochastic model since then on average smaller times
tween collisions would correspond to the downhill side a
not the uphill side.

With the results of Sec. III B, this discrepancy can eas
be explained. It arises from the way these times are de
mined in the stochastic model. There, the time of flight d
pends on whether the previous impact occurred at the up
or downhill side of a ball on the plane. If it was on the uph
side, the time of flight is assumed to be 2vz /g, disregarding
the details of the plane surface; if it was on the downhill sid
it is assumed that the time of flight is 2r /vx . The next im-
pact angle is chosen at random, though from a distribut
that reflects the angles actually accessible to the particle
to the obliqueness of the impact.

By contrast, in the simulation it depends not on the ex
location of an impact whether the time until the next one
determined byvx or vz , but rather on whether the ball i
rolling or jumping. If it is rolling, the time until the next

FIG. 14. Total time spent interacting with the same ball on
plane, translated into distances in units of particle radius of
small particles. Both curves are forF55 andu50.05; the full line
for en50.8 and the dashed line is foren50.4.
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56 3655HOW TRANSVERSAL FLUCTUATIONS AFFECT THE . . .
collision is mainly determined byv t and the distance be
tween the point of onset of rolling and the next ball on t
plane. Though the probability of the ball already rolling
higher towards the downhill than the uphill side, no distin
tion can be madea priori. The typical distance moved by
rolling ball before colliding with the next one is usually~es-
pecially for higheren! much smaller thanr , which gives a
much smaller time between collisions than the estimate
the stochastic model, where this distance is always 2r . If the
ball is jumping, the time of flight will be determined byvz or
rather by a combination ofvx ,vz and the exact location on
surface bump where the last impact took place. The rand
choice of impact angles in the stochastic model, even
takes place under certain geometrical restrictions, is ano
important difference. In the simulations, we found that in t
steady state, if the ball is jumping, successive impacts
highly correlated since the ball is moving in a preferred
rection and there are a few impacts on the same ball on
plane. Especially on the uphill side, the ball may be prem
turely stopped~compared to the time of flight calculated b
disregarding the details of the surface!. In the stochastic
model, this is taken into account only in calculating the p
sible impact angles, but not in the calculation of the time
flight. Therefore, the stochastic model on average overe
mates the time of flight.

Besides these differences in the details of the moti
there is also a quite significant discrepancy between s
global experimental and simulation results and the stocha
model. In the stochastic model, a linear dependence ofv̄x on
sinu is found for 6<F<10 at angles of inclination
0.1&sinu&0.3 and the whole steady-state region exten
over a range 0.02&sinu&0.45 for theseF. These angles o
inclination are far too high compared to the range found
the steady state in experiments and simulations. The re
probably is that the randomness introduced in the stocha
model leads to much higher dissipation than experienced
the particle in experiments or simulations. In the simulatio
we find as well that the more random the particle motion g
~like for high en as compared to lowen!, the higher dissipa-
tion gets. In the steady state, it seems to be more adva
geous for the particle to keep as closely to the plane as
sible, i.e., to dissipate all the normal velocity gained
moving from one particle to the next as soon as possible,
then move parallel to the surface until the next abrupt cha
in the surface direction takes place. However, especi
when the motion starts to get more irregular, the stocha
model should be appropriate for describing the motion,
still gives a steady state.

The reason for the existence of a steady state for v
largeu results from the absence of rotation in the stocha
model. If the particle cannot rotate, but experiences fricti
the angle region for which a steady state exists shifts towa
significantly largeru, compared to a rotating particle. I
molecular-dynamics simulations of the two-dimension
case, where particle rotation was excluded, we found
steady-state region for 0.2&sinu&0.4 for F52.25 and a
friction coefficientm50.13 @34# ~the samem as used in the
stochastic model!. Since there is friction present in the st
chastic model, but the particle cannot rotate, friction is
additional source of dissipation that obviously extends reg
B to significantly higheru.
-
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V. SUMMARY

We have presented molecular-dynamics simulations o
single sphere moving on an inclined plane made rough
glueing similar spheres to it. We have shown that the ori
of the friction force experienced by the moving sphere in
certain range of inclination angles is essentially the same
in the two-dimensional case discussed in@12#. In the steady
state, the moving ball tries to adjust its velocity to each p
ticle on the plane it passes, i.e., it strives to move paralle
the surface. Adjustment of the velocity occurs in a series
small bounces on each ball that is passed, since in each
lision velocity normal to the surface is lost. If this adjustme
could be achieved permanently, as it would for a b
dropped on a perfectly smooth~though maybe microscopi
cally rough! plane, the ball would never reach a steady sta
However, since the direction of the plane surface~i.e., the
tangent to the plane! changes abruptly every time the movin
sphere passes from one surface asperity to the next, this
justment can never succeed completely. In this first collis
with each ball on the plane part of the previously tangen
velocity is transferred to normal velocity due to the chan
in the direction of the surface. This new normal velocity
subsequently dissipated in the same way.

The coefficient of restitution mainly determines ho
many collisions with each ball on the plane are necessar
dissipate all or a large amount of this velocity. The ma
importance of the roughness of the plane is the continu
conversion of energy gained~in moving parallel to the sur-
face! to energy that can be dissipated. This is achieved
transferring velocity from the tangential direction to the no
mal direction. The plane thus prevents the particle fro
‘‘collapsing’’ on the plane permanently. We found that
steady state can only be reached if this ‘‘collapse’’ or at le
a substantial reduction ofvn is achieved on most balls on th
plane that are passed. If it can be achieved, it is unimpor
in how many collisions this happened; hence results the
sensitivity of v̄x to en . This means that in the steady sta
the friction force exerted on the particle by the rough plane
unaffected by the velocity loss in a single collision and on
determined by the geometrical roughness of the surface.

With the mechanism that maintains the steady-state ve
ity we could also explain the details of the motion such
distributions of impact angles and distributions of times b
tween collisions. The source for differences between
two-dimensional and three-dimensional cases has bec
clear. The diffusion coefficients in the transverse and lon
tudinal directions were found to collapse on a decreas
function of sinu if Dx was scaled byFb. The exponentb
slightly depended onen since Dx did and for en50.4,
b'1.5 was found. By contrast,Dy hardly seemed to be af
fected by eitherF or en . A qualitative explanation could be
given for some of these properties with the help of the det
of the motion.

Our simulation results have clarified many points in t
motion of a single particle on a rough inclined plane, thou
some details are still unclear and an analytical approach
contrary to the two-dimensional case, still lacking. Howev
the main reason for this lack is the fact that the disorder
our plane is not as well defined as in the two-dimensio
case and cannot be incorporated in a similar approxima
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as easily as in the two-dimensional case. Still, our simu
tions have revealed one important property of the motion
the ball that might be of relevance also in more complica
flows, namely, the independence of the mean propertie
the steady state ofen . Though in more complicated flows th
fluctuations are more important for the overall propert
than in the case of the single particle, we expect that so
effects of this independence will be visible in many-partic
flows as well. We expect this to be especially relevant
flow in inclined chutes, since there, like in the single-parti
case, the particle is driven to interact with the dissipat
boundary by a constant force, unlike in flow in a vertic
.

ic
.
,

.

,

l,
-
f
d
in

s
e

o

e
l

pipe, where contact with the boundaries mainly comes ab
by the fluctuations in the motion. Work along these lines
in progress.
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